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Basic problem (1/3)

Consider a classic multiperiod utility function

utility =
T∑
t=0

(
x>t rt+1 −

γ

2
x>t Σxt − C(∆xt)

)
(1)

where

xt are the portfolio holdings at time t,

rt+1 is the vector of asset returns over [t, t + 1],

Σ is the covariance matrix of returns,

γ is the risk-aversion coefficient, and

C(∆x) is the cost of trading ∆x dollars in one unit of time

We wish to solve
x∗ = argmax

x0,x1,...
E0[utility] (2)
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Basic problem (2/3)

A common formulation of this problem is given by

x∗ = argmax
x0,x1,...

E0

[ T∑
t=0

(
x>t rt+1 −

γ

2
x>t Σxt −∆x>t Λ∆xt)

)]
(3)

where

rt+1 = µt+1 + αt+1 + εrt+1 (4)

αt+1 = Bft + εαt+1 (5)

∆ft = −Dft−1 + εft (6)

and

ft (factors) and B (factor loadings)

Λ > 0 (matrix of quadratic t-costs)

D > 0 (matrix of mean-reversion coeff.)

εrt+1, ε
α
t+1, ε

f
t normally distributed
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Basic problem (3/3)

Main results:

Solution obtained through the linear-quadratic Gaussian
regulator (LQG)

Optimal trade is linear in the current state, i.e. ∆xt = Ltst ,
where st = (ft , xt)

> and Lt is obtained from a Riccati equation

Problem with linear market impact costs can be solved by
augmenting the state space, i.e. st = (ft , xt , ht)

>

Remarks:

LQG requires linear state space and quadratic utility

Cannot handle constraints directly

Cannot handle non-linear market impact costs
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Related literature

The investment-consumption problem (i.e. Merton (1969;
1990))

Portfolio transitions (Kritzman, Myrgren et al. (2007))

Optimal execution (Almgren and Chriss (1999; 2001))

“Execution risk” – the interplay between transaction costs and
portfolio risk (Engle and Ferstenberg (2007))

Alpha-decay and temporary one-period market impact
(Grinold (2006), Garleanu and Pedersen (2009))

Alpha-decay and linear permanent and temporary market
impact costs (Kolm (2012))
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Our approach: Intuition (1/2)

1 The unknown portfolios in the future, xt , can be viewed as
random variables with their own distributions

2 These distributions are goverened by the previous state, and
the cost to trade out of that state. Very large trades are
unlikely to be optimal

3 Main idea: We can construct a probability space such that
the most likely sequence x = {xt : t = 1, . . . ,T} is the one
that optimizes expected utility

xt

density f(x t+1 | xt )

unlikely due to 
high trading cost
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Our approach: Intuition (2/2)

Further intuition

1 If yt is the portfolio that would be optimal at time t without
transaction costs, then yt is not related to its own past values,
only contemporaneous information at t

2 yt is the solution to a problem that only looks one period
ahead, as in the original work of Markowitz in 1950s. The
solution is proportional to Σ−1E[rt ] but we will discuss a
better way of doing this kind of optimization later on

3 xt is more likely to be optimal if it is closer to yt , but less
likely if trading cost is too high

4 ⇒ Our final probability model should include both kinds of
terms p(yt | xt) and p(xt+1 | xt). Both should be decreasing as
the separation of their arguments increases
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Our approach

Associate to the problem a Hidden Markov Model (HMM):

Whose states xt represent possible holdings in the true
optimal portfolio, and

Whose observations yt are the holdings which would be
optimal in the absence of constraints and transaction costs

observed yt yt+1

p(yt | xt)
x xp(yt+1 | xt+1)

hidden . . . −−−−→ xt −−−−−−→
p(xt+1 | xt)

xt+1 −−−−→ . . .
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Main result

Theorem: Let X denote the space of possible portfolios. For any
utility function of the form

utility(x) =
T∑
t=0

[
x>t rt+1 −

γ

2
x>t Σxt − C(∆xt)

]
there exists a HMM with state space X and an observation
sequence y such that

log[ p(y | x)p(x) ] = K · utility(x)

In other words, the utility is (up to normalization) the log-posterior
of some probability
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Proof (1/3)

Any HMM is specified by

prior: p(x0) = exp(−c(x0)) (7)

observation channel: p(yt | xt) = exp(−b(yt , xt)), (8)

transition kernel: p(xt | xt−1) = exp(−a(xt , xt−1)), (9)

The Markov assumption entails:

p(y | x)p(x) = p(x0)
T∏
t=1

p(yt | xt)p(xt | xt−1) (10)

= exp(−J), where

J = c(x0) +
T∑
t=1

(
a(xt , xt−1) + b(yt , xt)

)
(11)
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Proof (2/3)

Take as ansatz

a(xt , xt−1) = C(xt , xt−1) = expected cost to trade from

portfolio xt−1 into portfolio xt within one time unit

b(yt , xt) =
γ

2
(yt − xt)

>Σt(yt − xt) + b0.

where γ is the risk-aversion and Σt is the forecast covariance
matrix. Plugging this into (11) we have

J = c(x0) +
T∑
t=1

(
a(xt , xt−1) +

γ

2
x>t Σtxt + xTt qt

)
,

where qt := −γΣtyt (12)

Note: The quadratic term in (12) is the risk term as appearing in
the utility function

Petter Kolm and Gordon Ritter Courant Institute, NYU Paper appeared in Risk Magazine, Feb. 25 (2015) issue Working paper version: papers.ssrn.com/sol3/papers.cfm?abstract_id=2472768Multi-period Portfolio Choice and Bayesian Dynamic Models

papers.ssrn.com/sol3/papers.cfm?abstract_id=2472768


Proof (3/3)

Consider the sequence of “observations”

yt = (γΣt)
−1αt where αt = E [rt+1]. (13)

Then qt = −γΣtyt = −αt , so the log-posterior (12) becomes

J = c(x0) +
T∑
t=1

[
C(xt , xt−1) +

γ

2
x>t Σtxt − x>t αt

]
,

and the proof is complete �

Note: Here yt is the Markowitz portfolio. Uncertainty in αt or Σt

can be interpreted as another source of noise in the observation
channel, and can be handled in a Bayesian context by introducing
the posterior predictive density
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Discussion: A general model

The model generalizes the optimal liquidation model of
Almgren-Chriss1, more recent work of Almgren, and the
multiperiod optimization model of Garleanu and Pedersen2

This model allows us to effectively use a full (time-varying)
term structure for covariance (e.g. variance-causing event
expected over the lifetime of the path), trading cost (e.g.
intraday volume smiles), and alpha

The model deals naturally with constraints and fixed costs,
which are usually thorny issues

The model trade off tracking error and transaction cost for any
dynamic portfolio sequence (not only Markowitz), for example
risk parity, Black-Litterman, optimal hedge for a derivative

1Almgren, R.,& Chriss, N. (1999). Value under liquidation. Risk, 12, 61–63.
2Garleanu, N. and Pedersen L. (2012) ”Dynamic Trading with Predictable

Returns and Transaction Costs”
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Utility maximization

We have shown that

log[ p(y | x)p(x) ] = K · utility(x)

Maximization of the above is a well known problem in statistics
called maximum a posteriori (MAP) sequence estimation. In many
contexts, (speech recognition, etc.) one is interested in the most
likely sequence of hidden states, given the data

If C(xt−1, xt) is quadratic (linear market impact), then the
MAP sequence is explicitly computable in closed form via the
Kalman smoother

If C(xt−1, xt) is non-quadratic, as is widely believed (see for
example Almgren3 and Kyle-Obizhaeva) then the
state-transition probability p(xt+1 | xt) is non-Gaussian

3Almgren, R. F. (2003). Optimal execution with nonlinear impact functions
and trading-enhanced risk. Applied mathematical finance, 10(1), 1-18.
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MAP sequence estimation in the non-Gaussian case (1/2)

Doucet, Godsill and West4 showed that MAP sequence estimation
in the non-Gaussian case can be done as follows:

1 Generate a discretization of state space for each time period
by Monte Carlo sampling from the posterior (for example, the
particle filter is one way of performing this sampling), and

2 Apply the Viterbi algorithm to this discretization as if it were
a finite-state-space HMM

4Godsill, S., Doucet, A., & West, M. (2001). Maximum a posteriori
sequence estimation using Monte Carlo particle filters. Annals of the Institute
of Statistical Mathematics, 53(1), 82-96.
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MAP sequence estimation in the non-Gaussian case (2/2)

To apply the particle filter,

We need to have an importance density which is easy to
sample from, and whose support contains the support of the
posterior, and

The importance density needs to satisfy the Markov
factorization

From our empirical testing a Gaussian appears to work well. It is
obtained via the Kalman smoother using a quadratic
approximation of the total cost function
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Practical considerations 1: Fast computation of Markowitz
portfolios

Let Xσ be an n × k matrix of exposures to risk factors where,
typically, k � n. Consider the problem

max
h

{
h′α− κ

2
h′Vh

}
subject to: h′Xσ = 0.

Covariance is typically modeled as

V = XσFX
′
σ + diag(σ2

1, . . . , σ
2
n)︸ ︷︷ ︸

D

, F ∈ Rk×k

The Karush-Kuhn-Tucker conditions lead directly to:

h∗ = (κV )−1
(
α− Xσ(X ′σV

−1Xσ)−1X ′σV
−1α

)
(14)

Since h′Xσ = 0, we have that h′Vh = h′Dh. Therefore, we can
replace V with D in (14). Both D and X ′σD

−1Xσ can be stably
and efficiently inverted, unless we have highly co-linear risk factors
or near-zero variance. The computation (14) is O(k2) where
typically k � n
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Practical considerations 2: Handling constraints

States disallowed by the constraints are zero probability
targets for any state transition

Since the negative log of the transition kernel is the trading
cost, infeasible states behave as if the cost to trade into them
from any starting portfolio is very large (infinite)

Our model is flexible enough to allow state-dependent
constraints such as a minimum diversification constraint which
is only active if the portfolio becomes levered more than 3 to 1
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Practical considerations 3: Non-linear market impact

Kyle and Obizhaeva (2011): The cost to trade |X | shares in the
course of a day is given by

C(|X |) = Pσ ·

(
κ2

W 1/3

V
X 2 + κ1W

−1/3|X |

)
(15)

where

P is the price per share,

V is the daily volume of shares, and

W = V · P · σ denotes trading activity i.e.
(daily dollar trading volume) × (daily return volatility)

Note: κ1 and κ2 are numerical coefficients which do not vary
across stocks, and have to be fit to market data
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Practical considerations 4: Alpha term structures

Alpha term structures arising from combining multiple alpha
sources with varying decay rates, strengths, and signs can be
quite nuanced

A strong negative alpha decaying quickly combined with a
strong positive alpha decaying slowly results in a term
structure that switches sign
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Example 1: Single exponentially-decaying alpha source

Simplest interesting example: one alpha source, with term
structure generated by exponential decay. The best possible
Kalman path is similar to the truly optimal Viterbi path, but the
two paths still differ sufficiently as to maintain a noticeable
difference in utility

Figure: (a) 1 alpha model, the first with initial forecast = 25 bps,
exponential decay with half-life = 4 periods (b) the sub-optimal trading
path generated by a quadratic approximation to cost, and the true
optimal path (c) particles generated by the particle filter
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Example 1: Alpha term structure

Figure: 1 alpha model, the first with initial forecast = 25 bps, exponential
decay with half-life = 4 periods
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Example 1: Trading paths

Figure: The sub-optimal trading path generated by a quadratic
approximation to cost, and the true optimal path
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Example 1: Particles

Figure: Particles generated by the particle filter
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Example 2: Two exponentially-decaying alpha sources

Including a second alpha source leads to a slightly nuanced term
structure. Specifically, the alpha term structure is negative then
positive, due to the different decay rates and opposite signs of the
two alpha models which are being combined

Figure: (a) 2 alpha models, the first with initial forecast = 25 bps,
exponential decay with half-life = 4 periods and the second with initial
forecast = -40 bps, exponential decay with half-life = 2 periods (b) the
sub-optimal trading path generated by a quadratic approximation to cost,
and the true optimal path (c) particles generated by the filter
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Example 2: Alpha term structure

Figure: 2 alpha models, the first with initial forecast = 25 bps,
exponential decay with half-life = 4 periods and the second with initial
forecast = -40 bps, exponential decay with half-life = 2 periods
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Example 2: Trading paths

Figure: The sub-optimal trading path generated by a quadratic
approximation to cost, and the true optimal path
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Example 2: Particles

Figure: Particles generated by the filter
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Example 3: Two alpha sources, long-only constraint

Prevous example with a long-only constraint. Since there is no
Gaussian probability kernel which is zero outside the feasible
region, there is no appropriate Kalman smoother solution that
incorporates the long-only constraints. Note absence of particles in
the zero-probability region

Figure: (a) 2 alpha models, the first with initial forecast = 25 bps,
exponential decay with half-life = 4 periods and the second with initial
forecast = -40 bps, exponential decay with half-life = 2 periods (b) the
sub-optimal trading path generated by a quadratic approximation to cost,
and the true optimal path (c) particles generated by the filter
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Example 3: Alpha term structure
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forecast = -40 bps, exponential decay with half-life = 2 periods
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approximation to cost, and the true optimal path
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Example 3: Particles

Figure: Particles generated by the filter
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Finding Optimal Paths: Key Multi-Asset Result

Optimal trading paths won’t be very interesting if we can’t
actually find them! We’ll now move on to talking about the
very practical matter of computing these things.

Multiperiod optimization is much less scary (but still
interesting) if there’s only one asset. It would be nice if we
could treat one asset at a time.

We’ll show the nontrivial fact that solving a multiperiod
problem with many assets reduces to repeatedly solving
single-asset problems. This is not obvious because the assets
are coupled via the risk term.
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Finding Optimal Paths: Many Assets

Theorem (Kolm and Ritter, 2014)

Multiperiod optimization for many assets reduces to solving a
sequence of multiperiod single-asset problems.

Proof will be accomplished over the next several slides as intuition
is developed along the way.

Make fairly weak assumption that “distance” from the ideal
sequence yt is a function that is convex and differentiable,
which is true for

(yt − xt)
>(γΣt)(yt − xt) =: bγΣt (yt , xt) (16)

We still allow for non-differentiable t-cost functions.

Petter Kolm and Gordon Ritter Courant Institute, NYU Paper appeared in Risk Magazine, Feb. 25 (2015) issue Working paper version: papers.ssrn.com/sol3/papers.cfm?abstract_id=2472768Multi-period Portfolio Choice and Bayesian Dynamic Models

papers.ssrn.com/sol3/papers.cfm?abstract_id=2472768


Mathematical Interlude

Q: Given convex, differentiable f : Rn → R, if we are at a point x
such that f (x) is minimized along each coordinate axis, have we
found a global minimizer? I.e.,does

f (x + d · ei ) ≥ f (x) for all d , i

imply that f (x) = minz f (z)?
(Here ei = (0, ..., 1, ...0) ∈ Rn, the i-th standard basis vector)

A: Yes!
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Mathematical Interlude

Q: Same question, but without differentiability assumption.

A: No!
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Mathematical Interlude

Q: Same question again: “if we are at a point x such that f (x) is
minimized along each coordinate axis, have we found a global
minimizer?” only now

f (x) = g(x) +
n∑

i=1

hi (xi )

with g convex, differentiable and each hi convex ... ?
(Non-smooth part here called separable)

A: Yes!
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Finding Optimal Paths: Many Assets

So we can easily optimize

f (x) = g(x) +
n∑

i=1

hi (xi )

with g convex, differentiable and each hi convex, by
coordinate-wise optimization. Apply with g(x) equal to∑

t

(yt − xt)
>(γΣt)(yt − xt) = bγΣt (y, x) (17)

and the role of hi (x
i ) played by total cost of the i-th asset’s

trading path.

For this to work we need trading cost to be separable
(additive over assets):

Ct(xt−1, xt) =
∑
i

C it(x it−1, x
i
t) (18)

where superscript i always refers to the i-th asset.
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Finding Optimal Paths: Many Assets

The non-differentiable and generally more complicated term in
u(x) is separable across assets.

If the other term(s) were separable too, we could optimize
each asset’s trading path independently without considering
the others.

Unfortunately, the “variance term” bγΣt (yt , xt), although
convex and infinitely differentiable, usually not separable. This
is intuitive: trading in one asset could either increase or
decrease the tracking error variance, depending on the
positions in the other assets.
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Finding Optimal Paths: Many Assets

x = (x1, . . . , xT ) denotes a trading path for all assets,

xi = (x i1, . . . , x
i
T ) projection of path onto i-th asset.

C i (xi ) denotes the total cost of the i-th asset’s trading path.

Require that each C i be a convex function on the
T -dimensional space of trading paths for the i-th asset.

Putting this all together, we want to minimize f (x) = −u(x)
where

f (x) = b(y − x) +
∑
i

C i (xi ) (19)

b : convex, continuously differentiable

C i : convex, non-differentiable

Petter Kolm and Gordon Ritter Courant Institute, NYU Paper appeared in Risk Magazine, Feb. 25 (2015) issue Working paper version: papers.ssrn.com/sol3/papers.cfm?abstract_id=2472768Multi-period Portfolio Choice and Bayesian Dynamic Models

papers.ssrn.com/sol3/papers.cfm?abstract_id=2472768


Finding Optimal Paths: Many Assets

Consider the following blockwise coordinate descent (BCD)
algorithm. Chose an initial guess for x. Repeatedly:

1 Iterate cyclically through i = 1, . . . ,N:

xi = argmin
ω

f (x1, . . . , xi−1, ω, xi+1, . . . , xN)

Seminal work of Tseng (2001) shows that for functions of the
form above, any limit point of the BCD iteration is a
minimizer of f (x).

Order of cycle through coordinates is arbitrary, can use any
scheme that visits each of {1, 2, . . . , n} every M steps for
fixed constant M.

Can everywhere replace individual coordinates with blocks of
coordinates

“One-at-a-time” update scheme is critical, and “all-at-once”
scheme does not necessarily converge
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Finding Optimal Paths: Many Assets

In particular, if b(y − x) is a quadratic function, such as (17)
summed over t = 1, . . . ,T , then it is still quadratic when
considered as a function of one of the x i with all x j (j 6= i)
held fixed.

Therefore, each iteration is minimizing a function of the form

quadratic(xi ) + c i (xi ).

This subproblem is mathematically a single-asset problem, but
it “knows about” the rest of the portfolio, ie the xj , which are
being held fixed.

If increasing holdings of the i-th asset can reduce the overall
risk of the portfolio, then this will be properly taken into
account.
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Finding Optimal Paths: Key Multi-Asset Result

So we have finished proving the key result:

Theorem (Kolm and Ritter, 2014)

Multiperiod optimization for many assets reduces to solving a
sequence of multiperiod single-asset problems.

Practical implication: if you’ve developed an optimizer which
finds an optimal trading path for one asset over several priods
into the future, you can immediately extend it to multi-asset
portfolios by writing a very short, simple computer program.
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Finding Optimal Paths: One Asset, Multiple Periods

Now consider multiperiod problem for a single asset.

Ideal sequence y = (yt) and optimal portfolios (equivalently,
hidden states) x = (xt) are both univariate time series.

If all of the terms happen to be quadratic (logs of Gaussians)
and there are no constraints, then viable solution methods
include the Kalman smoother and least-squares.

Many realistic cost functions fail these criteria

We’ll give two methods for solving this problem:

(a) ”Coordinate descent on trades”
Very fast, but not suitable for all problems

(b) “Particle filter and Viterbi decoder”
Slower, but works for any cost function and any constraints on
the path.
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Finding Optimal Paths: Coordinate descent on trades

First method: coordinate descent on trades.

Introduce a new variable to denote the “trade” at time t

δt := xt − xt−1

Suppose no constraints, but cost function is convex,
non-differentiable function of δ = (δ1, . . . , δT ).

Write xt = x0 +
∑t

s=1 δs , then

u(x) = −
∑
t

[
b
(
x0 +

t∑
s=1

δs , yt
)

+ Ct(δt)

]
(20)

Coordinate descent over trades δ1, δ2, . . . , δT , using a Kalman
smoother solution as a starting point is guaranteed to
converge to the global optimum, again by Tseng’s theorem
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Finding Optimal Paths: Coordinate descent on trades

Comments on first method:

Essentially the same algorithm is used in R for Lasso
regression (L1-norm penalty on coefficient vector), where it’s
routinely applied to large regression problems with millions of
observations and/or variables. Lasso is also a
non-differentiable, separable convex problem. It’s fast and
scales well.

Ideally suited to costs that are a function of the trade size,
such as commissions, spread pay, market impact, etc.

Borrow cost is actually a function of the position size held
overnight, but could be approximated by a convex,
differentiable term.

The method generalizes to quasiconvex cost functions.
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